Publications of Janis Timoshenko
All genres
Journal Article (53)
1.
Journal Article
Revealing catalyst restructuring and composition during nitrate electroreduction through correlated operando microscopy and spectroscopy. Nature Materials (2025)
2.
Journal Article
133 (22), 228001 (2024)
Adsorbate Configurations in Ni Single-Atom Catalysts during CO2 Electrocatalytic Reduction Unveiled by Operando XAS, XES, and Machine Learning. Physical Review Letters 3.
Journal Article
146 (46), pp. 31444 - 31455 (2024)
Reactivity and Stability of Reduced Ir-Weight TiO2-Supported Oxygen Evolution Catalysts for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes. Journal of the American Chemical Society 4.
Journal Article
A 3D Macroporous Carbon NiCu Single-Atom Catalyst for High Current Density CO2 Electroreduction. Advanced Functional Materials, 2419075 (2024)
5.
Journal Article
17 (19), pp. 7081 - 7096 (2024)
Time-resolved operando insights into the tunable selectivity of Cu–Zn nanocubes during pulsed CO2 electroreduction. Energy & Environmental Science 6.
Journal Article
36 (27), 2401133 (2024)
Synergizing Fe2O3 nanoparticles on single atom Fe-N-C for nitrate reduction to ammonia at industrial current densities. Advanced Materials 7.
Journal Article
31 (4), pp. 741 - 750 (2024)
Revealing the structure of the active sites for the electrocatalytic CO2 reduction to Co over Co single atom catalysts using operando XANES and machine learning. Journal of Synchrotron Radiation 8.
Journal Article
15, 6111 (2024)
Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy. Nature Communications 9.
Journal Article
146 (14), pp. 9665 - 9678 (2024)
Electrocatalytic Nitrate and Nitrite Reduction toward Ammonia using Cu2O Nanocubes: Active Species and Reaction Mechanisms. Journal of the American Chemical Society 10.
Journal Article
146 (12), pp. 8677 - 8687 (2024)
Enhanced Methanol Synthesis from CO2 Hydrogenation Achieved by Tuning the Cu-ZnO Interaction in ZnO/Cu2O Nanocube Catalysts Supported on ZrO2 and SiO2. Journal of the American Chemical Society 11.
Journal Article
17 (5), pp. 2046 - 2058 (2024)
Role of Fe Decoration on the Oxygen Evolving State of Co3O4 Nanocatalysts. Energy & Environmental Science 12.
Journal Article
9, pp. 422 - 433 (2024)
Selective and energy-efficient electrosynthesis of ethylene from CO2 by tuning the valence of Cu catalysts through aryl diazonium functionalization. Nature Energy 13.
Journal Article
36 (4), 2307809 (2024)
Reversible Structural Evolution of Metal-Nitrogen-Doped Carbon Catalysts During CO2 Electroreduction: An Operando X-ray Absorption Spectroscopy Study. Advanced Materials 14.
Journal Article
2 (1), pp. 311 - 323 (2024)
Operando insights into correlating CO coverage and Cu-Au alloying with the selectivity of Au NP-decorated Cu2O nanocubes during the electrocatalytic CO2 reduction. EES Catalysis 15.
Journal Article
6 (1), 277 (2023)
Dynamic behaviour of platinum and copper dopants in gold nanoclusters supported on ceria catalysts. Communications Chemistry 16.
Journal Article
145 (39), pp. 21465 - 21474 (2023)
Spatially and Chemically Resolved Visualization of Fe Incorporation into NiO Octahedra during the Oxygen Evolution Reaction. Journal of the American Chemical Society 17.
Journal Article
154 (31), pp. 17351 - 17366 (2023)
Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning. Journal of the American Chemical Society 18.
Journal Article
14, 4554 (2023)
Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nature Communications 19.
Journal Article
145 (7), pp. 4065 - 4080 (2023)
Deciphering the Structural and Chemical Transformations of Oxide Catalysts during Oxygen Evolution Reaction Using Quick X-ray Absorption Spectroscopy and Machine Learning. Journal of the American Chemical Society 20.
Journal Article
145 (5), pp. 3016 - 3030 (2023)
Shape-Dependent CO2 Hydrogenation to Methanol over Cu2O Nanocubes Supported on ZnO. Journal of the American Chemical Society