Synthetic Life-like Systems

Chemistry of Self-Assembly in Living Systems

Self-organization in Nature is a fascinating phenomenon where molecules form transient supramolecular or dynamic bonds on demand.
In this area, we focus on designing molecules that self-assembles directly within a living environment i.e. in a cell or with viruses. This involves the understanding of the biological environment and developing suitable chemical platforms to control, both time and location, of the assembly process.
By creating synthetic architectures within the living cell, we hope to derive nanostructures that would empower biological functions in life.
1.
Wagner, J.; Li, L.; Simon, J.; Krutzke, L.; Landfester, K.; Mailänder, V.; Müllen, K.; Ng, D. Y. W.; Wu, Y.; Weil, T.: Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirus 5. Angewandte Chemie International Edition 59 (14), pp. 5712 - 5720 (2020)
2.
Hebel, M.; Riegger, A.; Zegota, M. M.; Kizilsavas, G.; Gačanin, J.; Pieszka, M.; Lückerath, T.; Coelho, J. A. S.; Wagner, M.; Gois, P. M. P. et al.; Ng, D. Y. W.; Weil, T.: Sequence Programming with Dynamic Boronic Acid/Catechol Binary Codes. Journal of the American Chemical Society 141 (36), pp. 14026 - 14031 (2019)
3.
Ng, D. Y. W.; Vill, R.; Wu, Y.; Koynov, K.; Tokura, Y.; Liu, W.; Sihler, S.; Kreyes, A.; Ritz, S.; Barth, H. et al.; Ziener, U.; Weil, T.: Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues. Nature Communications 8, 1850 (2017)

High Resolution Polymeric Architectures Templated by Proteins/DNA

The core focus of this topic uses the architectural perfection of proteins and DNA to provide a framework for polymer chemistry. Nanoscale structures such as DNA origamis and denatured proteins offer a monodisperse template with absolute geometry and chemistry.
By programming this exact placement of functional groups on the macromolecular scaffold, polymerization reactions can be spatially controlled to map a designated architecture. These structures seek to elucidate the effect of unnatural shapes in biomedicine and materials science.

4.
Chen, C.; Wunderlich, K.; Mukherji, D.; Koynov, K.; Heck, A.; Raabe, M.; Barz, M.; Fytas, G.; Kremer, K.; Ng, D. Y. W. et al.; Weil, T.: Precision Anisotropic Brush Polymers by Sequence Controlled Chemistry. Journal of the American Chemical Society 142 (3), pp. 1332 - 1340 (2020)
5.
Winterwerber, P.; Harvey, S.; Ng, D. Y. W.; Weil, T.: Photocontrolled Dopamine Polymerization on DNA Origami with Nanometer Resolution. Angewandte Chemie, International Edition 59 (15), pp. 6144 - 6149 (2020)
6.
Tokura, Y.; Harvey, S.; Chen, C.; Wu, Y.; Ng, D. Y. W.; Weil, T.: Fabrication of Defined Polydopamine Nanostructures by DNA Origami-Templated Polymerization. Angewandte Chemie International Edition 57 (6), pp. 1587 - 1591 (2018)
Go to Editor View