Synthetic Life-like Systems

Controlling Biological Functions through Synthetic Supramolecular Concepts

Self-organization in Nature is a phenomenon where molecules form transient supramolecular structures governed by dynamic chemical bonds. To understand how different chemical bonds translate into structural order and function in biology, we combine organic and peptide chemistry to create small molecules that can transform into different types of nanostructures on demand. We study how the chemical kinetics, equilibrium and non-equilibrium pathways affects cellular processes and thus changing their behavior.
Within this topic, scientists within the group learn and combine cell biology, supramolecular and organic chemistry in order to design, synthesize and control both the time and location of structural transformation. We aim to use these concepts to provide technological discoveries in fundamental science that open doors towards new therapeutic solutions.
Pieszka, M.; Han, S.; Volkmann, C.; Graf, R.; Lieberwirth, I.; Landfester, K.; Ng, D. Y. W.; Weil, T.: Controlled Supramolecular Assembly Inside Living Cells by Sequential Multistaged Chemical Reactions. Journal of the American Chemical Society 142 (37), pp. 15780 - 15789 (2020)
Chen, C.; Singh, M. K.; Wunderlich, K.; Harvey, S.; Whitfield, C.; Zhou, Z.; Wagner, M.; Landfester, K.; Lieberwirth, I.; Fytas, G. et al.; Kremer, K.; Mukherji, D.; Ng, D. Y. W.; Weil, T.: Polymer cyclization for the emergence of hierarchical nanostructures. Nature Communications 12, 3959 (2021)
Zhou, Z.; Maxeiner, K.; Moscariello, P.; Xiang, S.; Wu, Y.; Ren, Y.; Whitfield, C.; Xu, L.; Kaltbeitzel, A.; Han, S. et al.; Mücke, D.; Qi, H.; Wagner, M.; Kaiser, U.; Landfester, K.; Lieberwirth, I.; Ng, D. Y. W.; Weil, T.: In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism. Journal of the American Chemical Society 144 (27), pp. 12219 - 12228 (2022)

Engineering Precision Nanoscale Biointerfaces

The core focus of this topic uses the architectural perfection of proteins and DNA to provide a framework for polymer chemistry. Nanoscale structures such as DNA origamis and denatured proteins offer a monodisperse template with absolute geometry and chemistry.
By programming this exact placement of functional groups on the macromolecular scaffold, polymerization reactions can be spatially controlled to map a designated architecture. These structures seek to elucidate the effect of unnatural shapes in biomedicine and materials science.
Lückerath, T.; Koynov, K.; Loescher, S.; Whitfield, C. J.; Nuhn, L.; Walther, A.; Barner-Kowollik, C.; Ng, D. Y. W.; Weil, T.: DNA-Polymer Nanostructures by RAFT Polymerization and Polymerization‐Induced Self-Assembly. Angewandte Chemie International Edition 59 (36), pp. 15474 - 15479 (2020)
Chen, C.; Wunderlich, K.; Mukherji, D.; Koynov, K.; Heck, A.; Raabe, M.; Barz, M.; Fytas, G.; Kremer, K.; Ng, D. Y. W. et al.; Weil, T.: Precision Anisotropic Brush Polymers by Sequence Controlled Chemistry. Journal of the American Chemical Society 142 (3), pp. 1332 - 1340 (2020)
Winterwerber, P.; Whitfield, C.; Ng, D. Y. W.; Weil, T.: Multiple Wavelength Photopolymerization of Stable Poly(Catecholamines)-DNA Origami Nanostructures. Angewandte Chemie International Edition 61 (8), e202111226 (2022)
Go to Editor View