Publications of Johannes Margraf

Journal Article (26)

21.
Journal Article
Levin, N.; Margraf, J.; Lengyel, J.; Reuter, K.; Tschurl, M.; Heiz, U.: CO2-Activation by size-selected tantalum cluster cations (Ta1–16+): thermalization governing reaction selectivity. Physical Chemistry Chemical Physics 24 (4), pp. 2623 - 2629 (2022)
22.
Journal Article
Keller, E.; Tsatsoulis, T.; Reuter, K.; Margraf, J.: Regularized second-order correlation methods for extended systems. The Journal of Chemical Physics 156 (2), 024106 (2022)
23.
Journal Article
Timmermann, J.; Lee, Y.; Staacke, C.; Margraf, J.; Scheurer, C.; Reuter, K.: Data-Efficient Iterative Training of Gaussian Approximation Potentials: Application to Surface Structure Determination of Rutile IrO2 and RuO2. The Journal of Chemical Physics 155 (24), 244107 (2021)
24.
Journal Article
Staacke, C.; Heenen, H.; Scheurer, C.; Csányi , G.; Reuter, K.; Margraf, J.: On the Role of Long-Range Electrostatics in Machine-Learned Interatomic Potentials for Complex Battery Materials. ACS Applied Energy Materials 4 (11), pp. 12562 - 12569 (2021)
25.
Journal Article
Li, H.; Liu, Y.; Chen, K.; Margraf, J.; Li, Y.; Reuter, K.: Subgroup Discovery Points to the Prominent Role of Charge Transfer in Breaking Nitrogen Scaling Relations at Single-Atom Catalysts on VS2. ACS Catalysis 11 (13), pp. 7906 - 7914 (2021)
26.
Journal Article
Wengert, S.; Csányi, G.; Reuter, K.; Margraf, J.: Data-efficient machine learning for molecular crystal structure prediction. Chemical Science 12 (12), pp. 4536 - 4546 (2021)

Book Chapter (1)

27.
Book Chapter
Wengert, S.; Kunkel, C.; Margraf, J.; Reuter, K.: Accelerating molecular materials discovery with machine-learning. In: High-Performance Computing and Data Science in the Max Planck Society, pp. 40 - 41. Max Planck Computing and Data Facility, Garching (2021)

Talk (26)

28.
Talk
Margraf, J.: Materials Discovery With Foundation Models. Machine Learning in Chemical and Material Sciences, MLCM-25, Online Event (2025)
29.
Talk
Margraf, J.: Machine Learning in Chemical Reaction Space. CECAM Flagship Workshop, Machine Learning of First Principles Observables, Berlin, Germany (2024)
30.
Talk
Margraf, J.: Extrapolation With Chemical Machine Learning. Beilstein Bozen Symposium 2024, Rüdesheim, Germany (2024)
31.
Talk
Margraf, J.: Science Driven Chemical Machine Learning. CICECO Workshop, Artificial Intelligence for Materials Design, Aveiro, Portugal (2024)
32.
Talk
Margraf, J.: Science Driven Chemical Machine Learning. 2nd SIMPLAIX Workshop on Machine Learning for Multiscale Molecular Modeling, Online Event (2024)
33.
Talk
Margraf, J.: Science Driven Chemical Machine Learning. DPG Spring Meeting of the Condensed Matter Section (SKM), Berlin, Germany (2024)
34.
Talk
Margraf, J.: Science Driven Chemical Machine Learning. 12th SolTech Conference 2023, Würzburg, Germany (2023)
35.
Talk
Margraf, J.: A Personal Perspective on ML Interatomic Potentials. Crash TEsting machine learning force fields: Applicability, best practices, limitations (TEA 2023), Luxembourg, Luxembourg (2023)
36.
Talk
Margraf, J.: Science-Driven Chemical Machine Learning. MCIC 2023: Materials Science Meets Artificial Intelligence – Advancements in Research and Innovation, Bochum, Germany (2023)
37.
Talk
Margraf, J.: Robust and Electrostatics-Aware Machine Learning Potentials. CECAM Psi-k Research Conference, Bridging Length Scales with Machine Learning, Berlin, Germany (2023)
38.
Talk
Margraf, J.: Physical Description of Long-Range Interactions in Atomistic Machine Learning Models. Seminars on Machine Learning in Quantum Chemistry and Quantum Computing for Quantum Chemistry (SMLQC), Online Event (2023)
39.
Talk
Margraf, J.: Science-Driven Chemical Machine Learning. Colloquium for Theoretical Chemistry, Universität Marburg, Online Event (2023)
40.
Talk
Margraf, J.: Science Driven Chemical Machine Learning. Thomas Young Center-FHI Workshop, London, UK (2023)
Go to Editor View